DATA WAREHOUSING AND DATA MINING

A CASE STUDY ON BUILDING A DATA WAREHOUSE

Prepared for:

Dr. Mohammad A. Rob
Professor, Management Information Science
University of Houston Clear Lake

Prepared by:

Mohammed Abdullah Ghorri
Abhinav Santi
Shaik Naseer Baba
Charanya Palanisamy

University of Houston Clear Lake
7 December, 2015
Contents

Abstract.. 3
Introduction .. 3
1. Business Scenario ... 4
2. Why Data Warehousing? ... 5
3. Methodology ... 5
4. Dimensional Modeling .. 6
5. Defining Data format .. 8
6. Data Cleansing ... 8
7. Implementation in SQL Server Analysis .. 9
8. Browsing the Cube .. 11
9. Report Generation .. 12
 I. Sales Report with respect to Age Group ... 12
 II. Sales Report with respect to Gender .. 13
 III. Half-Yearly Sales Report .. 14
 IV. Quarterly Sales report .. 15
 V. Region-wise Report .. 16
10. Conclusion ... 16
11. References ... 17

Samsung Inc.: A Case Study on Building a Data Warehouse
Samsung: A Case Study on Building a Data Warehouse

Abstract

This paper discusses concepts of data warehousing, its usage in our (Samsung) case study, the business scenarios of our case, the impacts of data warehousing on Samsung’s strategic decisions, and the approaches we used to create our cube analysis.

Introduction

Samsung is a South Korean multinational electronics company headquartered in Suwon, South Korea. Samsung has long been a major manufacturer of electronic components such as lithium-ion batteries, semiconductors, chips, flash memory and hard drive devices.

In recent years, the company has diversified into consumer electronics. It is the world's largest manufacturer of mobile phones and smartphones fueled by the popularity of its Samsung Galaxy line of devices. The company is also a major vendor of tablet computers, particularly its Android-powered Samsung Galaxy Tab collection, and is generally regarded as pioneering the phablet market through the Samsung Galaxy Note family of devices. Overall, the company sold 280 million mobile phones in 2010, corresponding to a market share of 20.2 percent. Partially owing to strong sales of the Samsung Galaxy range of smartphones, the company overtook Apple in worldwide smartphone sales during the third quarter 2011, with a total market share of 23.8 percent, compared to Apple’s 14.6 percent share.

Data warehousing is a central repository of information which stores current and historical data collected from multiple sources. These data are to be collected continuously, transformed to the same format and cleaned so it could be properly implanted.
1. Business Scenario

Samsung is the largest information technology company and measured by revenue and fourth in the market value. It is the world’s largest manufacturer of smart phones and largest vendor of tablet computers.

On top of its 1400 retail setups in the US the company has its presence across the globe.

In order to manage the overwhelming data from all over USA, Samsung has to set up Data Warehouse. It is crucial that all the stores are interconnected with each other and are performing on a centralized transactional system.

Let us explore some of the business needs of Samsung.

- Provide strategic and tactical support to the sales and finance department of the company
- Identify products of Sales and demand.
- What region has the highest/lowest sales revenue?
 - Furthermore, which state is doing well compared to others?
 - Which city in those states has highest/lowest sales?

- What kind of customers are we focusing on?
 - Males or Females?
 - What age group?

Data origins:

Samsung will collect the data from all over the stores in U.S. (For our class project, we created our own database).

Expected value:

Sales of different products are compared based on country demography and region, customers’ age group, gender, time intervals in year, month and quarter.
2. Why Data Warehousing?

Even though companies have been using computers to analyze their business processes, it is not producing satisfactory results. These processes were focused mainly on day to day operation of a business which was working adequately for small businesses.

Strategic information is helpful for analysis, discerning trends and monitoring performance. This is where data warehousing plays a significant role. Data warehousing is an environment where Samsung can look up historical data, observe current data and compare them to come up with the strategic solutions.

OLAP Cube Analysis

OLAP stands for Online Analytical Processing and Cube stands for multi-dimensional set of data. In general, OLAP cube is a mechanism that enables user to query data in organized, dimensional structures (using dimensions and measures) for analysis and hence support business decision-making. Based on the special functionalities of the OLAP cube, we decided to use it as our main method in analyzing our data and implement the experiment with Samsung.

3. Methodology

Step 1: Determine Business Objectives

Identify impacts of data warehousing on Samsung’s strategic business decisions.

Step 2: Collect and Analyze Information

To identify impacts of data warehousing on Samsung’s strategic business decisions what kind of information do we need? What data are significant and reliable? How do we collect that information?

Step 3: Identify Core Business Processes

We need to identify the entities that interrelate to create the key performance indicators.

Step 4: Construct a Conceptual Data Model

Here, we determine the fact tables, identify the dimensions that will be used which is related to the facts.

Step 5: Locate Data Sources and Plan Data Transformations

After we have the Data Model, it is time we identify the critical information and how to move it into the data warehouse structure.
Step 6: Implement the Process

As all the steps are completed, we implement the process.

4. Dimensional Modeling

Dimensional Modeling is a set of techniques and concepts which are used in data ware design. It is based on dimensions, facts, cubes and schemas such as star or snowflake. There are Fact Table and Dimension Table in this model.

Fact Table: A fact table consists of the measurements, metrics or facts of a business process. It is located at the center of a star schema or snowflake schema surrounded by dimension tables. It only has numeric values.

Fig 3.1 Summary of Data Warehousing
Figure 4.1. Fact Table

Dimension Table: It contains descriptive attributes that are typically textual fields. It is wide and consists of many columns and attributes. In Samsung’s case, there are four dimensions table: Customer, Location, Product, and Time. As you can see, customer table has Customer_ID, Customer_Fname, Customer_Lname, Customer_Age, and Customer_Gender of a customer. These are the attributes of customers. Location, Product and Time table have their own attributes as shown below. These all attributes will be used to extract strategic information for Samsung.

```plaintext
<table>
<thead>
<tr>
<th>Dimension Table</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
<td>Customer_ID, Customer_Fname, Customer_Lname, Customer_Age, Customer_Gender</td>
</tr>
<tr>
<td>Location</td>
<td>Location_ID, Location_City, Location_State, Location.Region</td>
</tr>
<tr>
<td>Product</td>
<td>Product_ID, Product_Type, Product_Name, Product_Cost</td>
</tr>
</tbody>
</table>
```

Figure 4.2. Dimensional Table

Samsung Inc.: A Case Study on Building a Data Warehouse
5. Defining Data format

We are using star schema for the Samsung case study. The figure below shows our star schema which has all the data formats defined. Each table has table name and attribute name. There are 4 dimensional tables with 1 fact table in the middle.

The four dimension tables are as follows:

- Customer table
- Time Table
- Product Table
- Location Table

The fact table is:

- saleFact Table

![Star Schema Diagram]

Fig 5.1 Star Schema

6. Data Cleansing

Data are derived from many sources in Data Warehousing. As they are being derived from many different sources, they end up having different formats. A standard form of data is required before it is introduced to data warehousing. A data transformation converts a set of data values from the data format of a source data system into the data format of a destination data system. Data cleansing helps data to create a consistent database which can be sent to data warehousing for further analysis.
7. Implementation in SQL Server Analysis

We used SQL server analysis to construct the cube. Cubes are the main objects in online analytic processing (OLAP), a technology that provides fast access to data in a data warehouse. A cube is a set of data that is usually constructed from a subset of a data warehouse and is organized and summarized into a multidimensional structure defined by a set of dimensions and measures. We used SQL server management studio to extract the database. Since we prepared the database table in Excel first and imported that to access we had data anomaly at first. Eventually, we succeed in setting up a cube and analyzing our data. The following steps shows how we connected to the database and implemented the cube.

Tables used

- Dimension Tables: Product, Customer, Location, Date
- Fact Tables: saleFact

Database (Data warehouse) Installed:

- Samsung_DB

Software used:

- Microsoft Visual Studio 2010
- Microsoft Access 2013
- Microsoft SQL Server 2012
 - Database Engine
 - Analysis Services
 - SQL Server Data Tools (SSDT)
 - SQL Server Management Studio
Fig. 6.1 Connecting to database server

Fig. 6.2 Creating a data source.

Samsung Inc.: A Case Study on Building a Data Warehouse
8. Browsing the Cube

Cube Implementation

As the cube is set up successfully, we can query it to retrieve numerous results. Our main motive was to compare sales revenue generated by the Samsung. Thus, we compared sales report based on demography, time intervals, age groups, gender.

Figure 8.1 Cube Implementation

Samsung Inc.: A Case Study on Building a Data Warehouse
9. Report Generation

After creating the cube the main aim is to get the data in a readable format i.e., reports. These reports are easily readable and understood by higher management for decision making purpose. The reports we have generated are:

- Monthly, Quarterly and Yearly sales reports of product.
- Sales report of product type with respect to gender.
- Sales report of product type with respect to age group.
- Sales Report of a product with respect to State & Region.

I. Sales Report with respect to Age Group

Fig. 9.1 Sales Report with respect to Age Group
The above screenshot shows the sales of the products (cellphones, Laptops and tablets) for a year for different age groups. Here we have grouped 11-15 age customers as 15, 16-20 as 20 so on. In the report we can see that age group 35 i.e. customers in age 30-35 have brought more number of cell phones than the other age groups. Sales of computers for the age group 30 i.e. 25-30 is more than the others. Sales of Tablets for the age group 40 is more.

II. **Sales Report with respect to Gender**

![Sales Report with respect to Gender](image)

Fig. 9.2 Sales Report with respect to Gender

The above screenshot shows the sales of products with respect to gender. We can infer from the report that the Men dominated in Cell phones, Laptops and tablets category. We can also know the total sales of the products Men and Women brought in a period of time.

Samsung Inc.: A Case Study on Building a Data Warehouse
III. Half-Yearly Sales Report

The above report shows that, there were comparative growths in the demand of product in H2 when compared to H1. For Example, The sales of Galaxy S was less in H1 but there is a rapid growth in H2. Similarly, the sales of Galaxy S4 was more in H1 but in H2 the sales of Galaxy S4 were less.
IV. **Quarterly Sales report**

The above screenshot is the quarterly sales report. It also shows the monthly total sales of the products. Here, we can see that the Q3 of the year has the highest sales whereas Q2 has the least sales.
V. Region-wise Report

The above report shows the sum of the sales_quantity (Sales_Qty) with respect to Location region and Location State. The graph estimates the number of Cell Phones, Laptops and Tablets sold in different regions and subcategorized into states. In the graph, all the devices are sold highest in the south region with a grand total of 231. In the same way the least sales are in the Mid-West region. In the graph there is a hierarchy of filtering the most sales devices according to the state & region.

10. Conclusion

From our experiment with Samsung using OLAP Cube Analysis, we have learnt some typical things:

- Data warehouse is a subject-oriented structure, which means it is organized around topics like: products, customers, locations, time & saleFact.
- Data warehouse enables us to study & analyze business operations through the outcome of various business reports.
- Data warehouse uses historic data for analysis to produce various kinds of reports such as: periodical reports, planning, forecasting and modeling.
- Along with data warehouse, OLAP Cube Analysis is an ultimate tool for BI solutions.

Samsung Inc.: A Case Study on Building a Data Warehouse
11. References